Uniform Random Covering Problems

نویسندگان

چکیده

Abstract Motivated by the random covering problem and study of Dirichlet uniform approximable numbers, we investigate problem. Precisely, consider an i.i.d. sequence $\omega =(\omega _n)_{n\geq 1}$ uniformly distributed on unit circle $\mathbb{T}$ a $(r_n)_{n\geq positive real numbers with limit $0$. We size set $$\begin{align*} & {\operatorname{{{\mathcal{U}}}}} (\omega):=\{y\in \mathbb{T}: \ \forall N\gg 1, \exists n \leq N, \text{s.t.} | \omega_n -y < r_N \}. \end{align*}$$Some sufficient conditions for ${\operatorname{{{\mathcal{U}}}}}(\omega )$ to be almost surely whole space, full Lebesgue measure, or countable, are given. In case that is null measure set, provide some estimations upper lower bounds Hausdorff dimension.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Non-uniform Hypergraphs

A subset of the vertices in a hypergraph is a cover if it intersects every edge. Let τ(H) denote the cardinality of a minimum cover in the hypergraph H , and let us denote by g(n) the maximum of τ(H) taken over all hypergraphs H with n vertices and with no two hyperedges of the same size. We show that g(n) < 1.98 √ n(1 + o(1)). A special case corresponds to an old problem of Erdős asking the ma...

متن کامل

Random Covering Designs

A t (n; k; ) covering design (n k > t 2) consists of a collection of k-element subsets (blocks) of an n-element set X such that each t-element subset of X occurs in at least blocks. Let = 1 and k 2t 1. Consider a randomly selected collection B of blocks; jBj = (n). We use the correlation inequalities of Janson ([10], [1]) to show that B exhibits a rather sharp threshold behaviour, in the sense ...

متن کامل

Min-Power Covering Problems

In the classical vertex cover problem, we are given a graph G = (V,E) and we aim to find a minimum cardinality cover of the edges, i.e. a subset of the vertices C ⊆ V such that for every edge e ∈ E, at least one of its extremities belongs to C. In the Min-Power-Cover version of the vertex cover problem, we consider an edge-weighted graph and we aim to find a cover of the edges and a valuation (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab272